Flatten a list of adjacency matrices into a character matrix
Value
a binary character matrix indicating the presence (1) or absence (0) of a link between vertices
Details
Assumes that the adjacency matrix has head and tail vertices in the columns and rows, respectively.
Examples
set.seed(9823)
n <- 3 # set number of species
As <- replicate(5, -diag(n) - 1.5 * matrix(runif(n^2), n, n), simplify = FALSE)
r <- matrix(1, n, 1)
schs <- lapply(As, inv_scheme, r)
gras <- lapply(schs, inv_graph)
pgras <- pad_adj_mats(gras)
adj2char(pgras)
#> -> 1-> 2-> 3-> 1,2-> 2,3-> 1,3-> 1,2,3-> ->1 1->1 2->1 3->1 1,2->1 2,3->1
#> IG1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
#> IG2 0 0 0 0 0 0 0 0 1 0 1 0 0 0
#> IG3 0 0 0 0 0 0 0 0 1 0 0 0 0 0
#> IG4 0 0 0 0 0 0 0 0 1 0 0 0 0 0
#> IG5 0 0 0 0 0 0 0 0 1 0 0 0 0 0
#> 1,3->1 1,2,3->1 ->2 1->2 2->2 3->2 1,2->2 2,3->2 1,3->2 1,2,3->2 ->3 1->3
#> IG1 0 0 1 0 0 0 0 0 0 0 1 1
#> IG2 0 0 1 0 0 0 0 0 0 0 1 0
#> IG3 0 0 1 0 0 0 0 0 0 0 1 0
#> IG4 0 0 1 0 0 0 0 0 0 0 1 0
#> IG5 0 0 1 0 0 0 0 0 0 0 1 0
#> 2->3 3->3 1,2->3 2,3->3 1,3->3 1,2,3->3 ->1,2 1->1,2 2->1,2 3->1,2 1,2->1,2
#> IG1 0 0 0 0 0 0 1 1 1 0 0
#> IG2 0 0 0 0 0 0 0 0 0 0 0
#> IG3 0 0 0 0 0 0 1 1 1 0 0
#> IG4 0 0 0 0 0 0 1 1 1 0 0
#> IG5 0 0 0 0 0 0 1 1 1 1 0
#> 2,3->1,2 1,3->1,2 1,2,3->1,2 ->2,3 1->2,3 2->2,3 3->2,3 1,2->2,3 2,3->2,3
#> IG1 0 0 0 1 1 1 1 1 0
#> IG2 0 0 0 1 0 1 1 0 0
#> IG3 0 0 0 1 0 1 1 0 0
#> IG4 0 0 0 1 0 1 1 0 0
#> IG5 1 1 0 1 0 1 1 0 0
#> 1,3->2,3 1,2,3->2,3 ->1,3 1->1,3 2->1,3 3->1,3 1,2->1,3 2,3->1,3 1,3->1,3
#> IG1 0 0 0 0 0 0 0 0 0
#> IG2 0 0 1 1 1 1 0 1 0
#> IG3 0 0 1 1 0 1 0 0 0
#> IG4 0 0 1 1 0 1 0 0 0
#> IG5 0 0 1 1 0 1 0 0 0
#> 1,2,3->1,3 ->1,2,3 1->1,2,3 2->1,2,3 3->1,2,3 1,2->1,2,3 2,3->1,2,3
#> IG1 0 0 0 0 0 0 0
#> IG2 0 0 0 0 0 0 0
#> IG3 0 1 1 1 1 1 1
#> IG4 0 1 1 1 1 1 1
#> IG5 0 0 0 0 0 0 0
#> 1,3->1,2,3 1,2,3->1,2,3
#> IG1 0 0
#> IG2 0 0
#> IG3 1 0
#> IG4 1 0
#> IG5 0 0